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ABSTRACT 

Five chimpanzees with training in counting and numerical skills selected between 2 arrays of different 
amounts of candy or 2 Arabic numerals. A reversed reinforcement contingency was in effect, in which the 
selected array was removed and the subject received the nonselected candies (or the number of candies 
represented by the nonselected Arabic numeral). Animals were unable to maximize reward by selecting 
the smaller array when candies were used as array elements. When Arabic numerals were substituted for 
the candy arrays, all animals showed an immediate shift to a more optimal response strategy of selecting 
the smaller numeral, thereby receiving the larger reward. Results suggest that a response disposition to 
the high-incentive candy stimuli introduced a powerful interference effect on performance, which was 
effectively overridden by the use of symbolic representations. 

 

 

 

There is little question that chimpanzees represent an extant species with cognitive capabilities often 
reminiscent of human reasoning abilities and conceptual skills (e.g., Boysen, Berntson, Shreyer, & 
Hannan, 1995; Fujita & Matsuzawa, 1986; Gillan, Premack, & Woodruff, 1981; Matsuzawa, 1985; 
Premack, 1986; Savage-Rumbaugh, 1986). Over the past two decades, numerous investigations with 
captive chimpanzees have focused on demonstrations of such skills, with either the overt or veiled 
suggestion that these abilities are analogous to similar capacities or cognitive processes in humans. In 
most cases, however, elucidation of the underlying cognitive mechanisms or the processes by which 
abilities were acquired have not been forthcoming. If not cautious, one can be left with the impression that 
chimpanzees are fundamentally equivalent to humans in most cognitive domains. It is perhaps the nature 
of the scientific enterprise, however, that when an animal fails to learn a task or acquire some specific 
skill, reports typically do not make their way into the archival literature. Nevertheless, the failure to acquire 
a particular task or to demonstrate some ability can sometimes be more compelling and informative than 
success, especially if the determinants and mechanisms of that failure can be identified. 

We recently encountered a rather striking training failure with 2 chimpanzees, in a study initially designed 
to explore strategic deception in this species. What was surprising was that the task was seemingly 
unremarkable, simply requiring a selection between two different-sized candy arrays (Boysen & Berntson, 



1995). Two chimpanzees worked together, with one (the selector) given the opportunity to make choices 
between the candy arrays. A reversed reinforcement contingency was imposed, so that the candies in the 
selected array were given to a passive observer animal. The selector chimp then received the remaining, 
nonselected array. Thus, the function of the selector was to choose the array that the observer was to 
receive, with the selector then getting what was left over. In order to maximize payoff, it was in the best 
interest of the selector animal to choose the dish with the smaller number of candies, in order to reap the 
larger remainder. However, both animals in the preliminary study failed to do so, even after hundreds of 
training trials. Instead, they persisted in generally choosing the dish that contained the larger number of 
candies and, thus, consistently received the smaller amount of reward. These findings are reminiscent of 
the self-control literature in humans, in which children, for example, have difficulty inhibiting a direct 
response to food in order to obtain a larger, but delayed, reward (Mischel, Shoda, & Rodriguez, 1989). 

To further explore this curious performance failure, we capitalized on the previously acquired skills of one 
of the animals (Sheba) in counting and in the use of Arabic numerals as quantity symbols (Boysen, 1993; 
Boysen & Berntson, 1989b). All of the task rules and features were identical, except that Arabic numerals, 
which represented the number of reinforcers (candies) that would be provided to the chimpanzees, were 
substituted for the candy arrays. Under these conditions, Sheba was able to immediately invoke the 
optimal food-sharing rules, which had been enforced since the start of the study, and now regularly 
received the larger candy array. As long as Arabic numerals served as stimuli, Sheba consistently 
selected the smaller numeral and earned the greater number of candies. When candies were 
reintroduced as stimuli, her performance immediately deteriorated but returned to more optimal levels 
when Arabic numerals were again substituted for the candy array stimuli (Boysen & Berntson, 1995). 

We suggested that there were two incompatible behavioral or evaluative dispositions operative in this 
task—one associative and the other probably nonassociative. An associative disposition to select the 
smaller of the two arrays would be expected to develop on the basis of the instrumental reward 
contingency. That such a disposition had in fact developed was apparent in the optimal performance with 
Arabic numerals, despite the fact that this implicit knowledge did not manifest with candy arrays as 
stimuli. We attributed the poor performance with candy arrays to an interfering nonassociative disposition 
to respond to the direct perceptual or incentive features, or both, of the larger candy array. In Miller's 
(1959) terminology, this would be an example of an approach-approach conflict. We will return to this 
issue in the discussion section, as a potentially important role for symbols and symbolic representations 
may lie in the resolution of conflicts among incompatible dispositions. 

The notable and persistent performance failure of the chimpanzees on the candy selection task provoked 
a number of questions that we address in the present studies. We first examine the generality of this 
interference effect and its resolution with symbols, as we now have 5 chimpanzees who are 
accomplished with Arabic numerals. We also evaluate the potential importance of the social food-
competition context that was inherent in the design of our prior study. Finally, we explore the potential 
contribution of the quantities and incentive qualities of the stimulus-array elements to the task-
interference effect. 

General Method 

Subjects 

Five chimpanzees (Pan troglodytes) served as subjects for each of the three experiments. Animals 
included 2 females (ages 12 years and 35 years) and 3 males (ages 6 years, 14 years, and 14.5 years). 
All of the animals had extensive experience and training on a variety of cognitive and behavioral tasks, 
including numerical matching of arrays of discrete items (0-6), selection of an Arabic numeral to match a 



sample array, and selection of an array to match a sample Arabic numeral (e.g., Boysen, 1993; Boysen & 
Berntson, 1989b; Boysen, Berntson, Shreyer, & Hannan, 1995; Boysen, Berntson, Shreyer, & Quigley, 
1993). Although some animals had considerably more breadth of experience with counting and other 
number-related skills (e.g., Sheba, Darrell), all had the numerical repertoires and conceptual competence 
necessary for the present series of experiments. 

Procedures 

All of the subjects were tested individually in a home caging area that could be directly accessed from the 
chimpanzees' outside play area. The testing space was equipped with a large polycarbonate window and 
steel shelf outside the window, on which the stimulus items were displayed. The chimpanzees made their 
choices by pointing to items, with the experimenter positioned out of view of the animal but able to clearly 
see their selections. All of the subjects were free to exit the testing situation at any time but were readily 
compliant and fully participated in testing. 

For each trial, two arrays of candy (chocolate-covered peanuts), two arrays of medium-sized rocks 
(approximately 2 cm in diameter), or two Arabic numeral symbols (black numerals on a white 7.5 × 12 cm 
background) were placed in two separate dishes. Dishes were placed in front of the subject, 
approximately 30 cm apart, and the chimpanzee was permitted to select one of the two dishes (by 
pointing). Once a choice was made, the experimenter returned the contents of the selected dish to the 
candy, rock, or placard supply. The remaining candy array in the nonselected disk (or a number of 
candies corresponding to the nonselected Arabic numeral or rock array) was given to the chimpanzee. 
Thus, it was to the subject's advantage to select the dish containing the numerically smaller stimulus of 
the pair, in order to receive the larger number of candy reinforcers. 

Test sessions were conducted twice daily, 5 days a week, between 9 a.m. and 4 p.m. The chimpanzees 
were maintained on their normal food ration throughout the study, which consisted of a variety of fresh 
fruits and vegetables given in feedings 3-5 times a day, with the final evening meal provided around 4:30 
p.m. In addition, candy and other treats were used as reinforcers during testing on a variety of other 
cognitive tasks during the day, as well as rewards for compliant behavior (e.g., moving from one cage to 
another when requested by the experimenter). Although the animals were not food deprived, the candies 
were highly preferred items, and the animals were highly motivated to procure them. 

Statistical Analysis 

Primary statistical evaluation was by t tests and regression analyses. For analysis of data from individual 
subjects, however, the nonparametric chi-square test for goodness of fit was used, as it does not assume 
independence of the measurements (Hays, 1988). Alpha level was set at .05 for all tests. 

Experiment 1 

The first experiment extended our finding of an interference effect in a quantity-judgment task to a larger 
group of animals. By testing animals in social isolation, we also examined the potential importance of the 
conspecific social context to the task-interference effect observed in our previous study (Boysen & 
Berntson, 1995). 

Method 

Two quantities of candies (0-6 items) were placed in separate dishes (e.g., 2 candies in one dish, 5 
candies in the other). The chimpanzees were permitted to choose one of the two dishes, and the contents 
of that dish were returned to the food supply in full view of the subject. The chimp was then given the 



candies from the remaining, nonselected dish. A total of 20 sessions were completed with each animal. 
Each session consisted of 20 trials (total of 400 trials per animal) with all possible combinations of the 
zero to six items, except one. In order to complete a trial block within each 20-trial session, one of the 21 
possible number combinations was not tested (1 vs. 4, selected randomly). In addition, one chimpanzee 
(Bobby) did not receive stimulus pairs with three or five items or the Arabic numerals 3 and 5, as 
separate, ongoing experimental studies required that he not be exposed to these quantities or their 
associated numerals. Order of the number combinations within the sessions was randomized, and the 
left-right (L-R) position of each item was counterbalanced across trials. 

Results 

General performance. Overall results are illustrated in Figure 1. In accord with our preliminary study 
(Boysen & Berntson, 1995), none of the 5 animals tested was able to reliably select the smaller of two 
candy arrays, despite the fact that this selection would yield the largest reward. As seen in Figure 1, 
performance was not random but was significantly below the expected chance performance of 0.50 (M = 
0.30, SEM = 0.01), r(4) = 27.47. That is, the animals reliably selected the larger of the two candy arrays, 
even though this choice yielded the smaller amount of candy reward. There was no apparent 
improvement over the 20 sessions (400 trials), and performance over the last 10 sessions was virtually 
identical to that of the first 10 sessions (0.29 ± .01 vs. 0.31 ± .02), t(4) = 0.85, ns. These results suggest 
that the incentive properties of the larger array may have introduced a selection bias that interfered with 
the optimal choice based on the extant reinforcement contingency (i.e., the selection of the smaller array 
in order to obtain the larger reward). 

Array size and disparity. As illustrated in Figure 2A, performance on the task was highly related to the 
relative size disparity between the two choice arrays as well as to the overall array sizes. As might be 
expected, a greater degree of interference or bias against optimal performance was apparent on trials in 
which there was a larger disparity between the number of candies in the two arrays. The greater the size 
differential, the more likely that the animals would select the larger array and consequently receive a 
smaller reward. As shown in Figure 2A, however, this incentive disparity effect was qualified by the overall 
size of the arrays. Specifically, the interference effect for a given arithmetic disparity was diminished with 
larger mean array sizes. This suggests that the relevant dimension of disparity was not simply its absolute 
numerical value but the magnitude of the disparity with respect to the overall size of the reward. That is, 
the effects of a reward differential appeared to be described by a Weber-like function (∆ reward/reward = 
constant). This would predict that the behavioral effects of a given array combination would be linearly 
related not to the array disparity, per se, but rather to the ratio of the disparity to the overall array sizes. 

This possibility was further examined by regression analyses. A disparity ratio was derived for each 
combination of paired arrays as the absolute numerical disparity between the arrays divided by the mean 
array size. For an overall analysis, mean performance (proportion of correct responses) across animals 
on each combination of paired arrays was then regressed against the disparity ratio for that pair of candy 
arrays. The results, illustrated in Figure 2B, revealed a highly significant relationship, with the disparity 
ratio accounting for approximately 93% of the variance in performance across all disparity ratios (R2 = 
.93), F(1, 18) = 253.41. As the disparity ratio increased, performance deteriorated. The slope of the 
function in Figure 2B offers an index of the incentive processing of the stimuli, reflecting the extent of the 
task interference associated with incentive-disparity between the candy arrays.† 

Individual differences. There was notable consistency in performance across animals. This was especially 
notable, as 2 of the animals (Sheba and Sarah) had considerable previous experience in an essentially 
comparable task, whereas the others had not (see Boysen & Berntson, 1995). The performance, as 
reflected in the overall proportion correct for each animal, was significantly below chance — all χ2s(1, N = 



400) = 55.0 — and fell within a narrow range of .27 to .31. Similarly, there was little variation in the slopes 
of the disparity-ratio-performance functions across animals, as derived from separate within-subjects 
analyses (M = -.53, SEM = 0.02; range = .49 to .58). In each case, individual slopes accounted for an 
appreciable proportion of the performance variance for each individual subject (all R2s > .70), Fs(1, 18) > 
41.0. 

Figure 1. Probability of optimal response of chimpanzees with candy array choice stimuli. Large (open) bar 
illustrates the mean performance across animals over all 20 sessions, and the heavy error bar illustrates the 
standard error of the overall mean. Smaller (cross-hatched) bars depict mean performance (and standard 
errors) within the 20 separate sessions. The dotted horizontal line depicts chance performance. 

 

 

Discussion 

In the present study, potential response biases arising from the immediate incentive features of the 
choice stimuli (i.e., the tendency to select the larger candy array) were pitted against the optimal 
response strategy (selection of the smaller array) based on the experimentally imposed reinforcement 
contingency. Results are consistent with our preliminary study (Boysen & Berntson, 1995) and suggest 
that the incentive properties of the choice stimuli introduced a response bias that interfered with an 
optimal choice strategy based on the differential reward contingency. Our previous study (Boysen & 



Berntson, 1995) entailed a social context in which an observer animal received the selected array and the 
subject, the nonselected array. The absence of the observer animal in the present study indicates that our 
prior results were not attributable to conspecific social competition. Indeed, there was substantial stability 
over time in the performance of the animal (Sheba), who had completed all phases of our previous study 
and was also tested in the present experiment. Despite the fact that the two studies were separated by 
almost 3 years, Sheba's overall performance in the comparable phase of the prior study (mixed arrays) 
was 34%, compared with 27% in the present study. 

Figure 2. Performance as a function of the numerical disparity among the paired stimuli and the mean array 
size. A. Best-fit (spline) three-dimensional response surface, illustrating the probability of optimal response 
as a function of both disparity and array size. Solid dots depict mean performance for each of the array 
combinations tested. B. Regression function illustrating the relationship between the probability of an 
optimal response and the disparity ratio (numeric disparity/total size of the arrays). The heavy line depicts 
the mean regression function, and the dotted lines illustrate individual regression functions for the 5 
subjects. Dots depict the mean data points for each array combination tested. 

 

 

Experiment 2 

In Experiment 1, response biases due to the incentive disparity between the choice stimuli yielded a 
powerful interference effect on optimal performance (as defined by the reinforcement contingency). It is 
not clear if this interference effect was dependent on the high incentive items (candies) that composed 
the stimulus-choice arrays or the perceptual features of the differing quantities that made up the arrays. 
This issue was addressed in Experiment 2, which was essentially comparable with Experiment 1, with the 
exception that the stimulus elements consisted of either candies or rocks in separate sessions. 

Method 

The testing context was identical to that of Experiment 1, with the exception that rock arrays, as well as 
candy arrays, were used as stimuli.‡ Subjects were again required to choose between candy arrays or 
rock arrays (in different sessions) placed in two stimulus dishes. Once the animals made a choice 
between the two arrays, the selected candy or rock array was removed from the dish in full view of the 
subject and returned to supply bowls containing other candy or rocks. The subject then received the 



candy from the remaining, nonselected dish or a corresponding number of candies represented by the 
rocks in the nonselected dish. The array elements (candies or rocks) used were consistent within a 
session; arrays were composed either of all candies or all rocks. 

All of the animals received an initial session using candies, followed by candy and rock sessions 
administered in counterbalanced order. Each animal was tested for a total of five sessions with candies 
and five with rocks. On the basis of the results of Experiment 1, a few changes were implemented in 
Experiment 2. A smaller number of sessions were given, in view of the session-to-session consistency 
obtained in Experiment 1. Consequently, a selected subset of stimulus combinations was used in order to 
increase the replicate trials with a given combination and still sample over a wide range of disparities and 
mean array sizes. Six stimulus combinations were used (0/5, 1/4, 1/6, 2/3, 3/6, 4/5), with each presented 
three times within a session. Trial order was randomized, and the L-R stimulus position was 
counterbalanced across trials. This yielded a total of 18 trials per session, for a total of 90 trials with each 
stimulus type (15 with each combination of array sizes). 

Figure 3. Mean probability of optimal response of chimpanzees with candy arrays and rock arrays as choice 
stimuli. Large (open) bars illustrate overall mean performance of the animals across all sessions with each 
stimulus type. Smaller (cross-hatched) bars depict mean performance for the five separate sessions with 
each stimulus type. For illustration, session data are depicted in order within the stimulus type, but sessions 
with different stimulus types were tested in counterbalanced order. Error bars illustrate the standard errors. 
The dotted horizontal line depicts chance performance. 

 

 

Results 

General performance. Overall results are illustrated in Figure 3. Consistent with the findings from 
Experiment 1, animals were unable to reliably select the smaller of two candy arrays in order to obtain a 



larger reward. Performance with candy arrays was again significantly below chance (M = 0.26, SEM = 
0.01), t(4) = 16.51, and no improvement in performance was apparent over that observed in Experiment 
1. Rather, the animals continued to select the larger of the two candy arrays, thus receiving the smaller 
reward. Although their overall performance with rocks as array elements was also below chance (M = 
0.34, SEM = 0.07), it was not significantly so, t(4) = 2.49. Performance with rocks also did not differ 
significantly from their performance with candies, t(4) = 0.92, ns. These findings suggest that the 
interference effect arising from the numerical disparity between the stimulus arrays was not entirely 
dependent on the immediate, perceptual apprehension of high-incentive array elements (candies). 

Figure 4. Regression functions illustrating the relationship between the probability of optimal responses and 
the disparity ratio (numeric disparity/total size of the arrays) for candy and rock array stimuli. The heavy line 
depicts the mean regression function, and the dotted lines illustrate individual regression functions for the 5 
subjects. Dots depict the mean data points for each array combination tested. 

 

 

Array size and disparity. Consistent with the results of Experiment 1, performance with candy arrays was 
related to the disparity between the two arrays. A greater degree of interference was apparent on trials in 
which there was a larger disparity between the number of candies in the two arrays, and this effect was 
qualified by the mean size of the arrays. As illustrated in Figure 4A, the disparity ratio again accounted for 
the vast majority of the variance in overall performance across the different numerical combinations of 
paired arrays (R2 = .99), F(1, 4) = 274.65. The slope of the disparity-ratio function with candy arrays was 
identical to that obtained in Experiment 1 (see Figures 2B and 4A). The results document a highly stable 
pattern of performance with candy arrays across both time and subjects. 

As shown in Figure 4B, a generally similar pattern of results was apparent with rocks as array items. 
Although the mean slope with rocks was less steep than with candies, this difference was not significant 
(for candies, M slope = -.53, SEM = 0.07; for rocks, M slope = -.34, SEM = 0.07), t(4) = 2.22, ns. 

Individual differences. As in Experiment 1, there were minimal individual differences among the animals in 
their performance with candy arrays. Nonparametric analyses revealed each animal's performance was 



significantly below chance—all χ2s(1, N = 90) > 12.8—with all values falling within the narrow range of .22 
to .31. Similarly, there was little variation in the slopes of the disparity-ratio functions across animals, as 
derived from separate within-subjects analyses (M = -.53, SEM = 0.02; range = .49 to .58). In each case, 
the individual slope accounted for an appreciable proportion of the performance variance of each subject 
across the differing array combinations (R2s = .51 to .90). 

Figure 5. Mean probability of optimal response of chimpanzees with candy arrays and Arabic numerals as 
choice stimuli. Large (open) bars illustrate overall mean performance of the animals across all sessions with 
each stimulus type. Smaller (crosshatched) bars depict mean performance for the six separate sessions with 
each stimulus type. For illustration, session data are depicted in order within the stimulus type, but sessions 
with different stimulus types were tested in counterbalanced order. Error bars illustrate the standard errors. 
The dotted horizontal line depicts chance performance. 

 

 

As illustrated in Figure 4, however, there was considerably greater animal-to-animal variation in 
performance with rocks as array elements. Three of the 5 animals displayed equivalent performance with 
candies and rocks, χ2s(1, N = 180) < 2.2, ns, although 2 subjects showed a significantly higher overall 
performance with rocks, χ2s(1, N = 180) > 8.5. This was associated with a decrease in the (negative) 
slope of the disparity-ratio function in one animal, suggesting diminished incentive dependent interference 
(Figure 4B). In contrast, improvement in the other animal was related to an overall increase in mean level 
of performance, without an appreciable slope change. 

Discussion 

The high-incentive items that composed the stimulus arrays of Experiment 1 likely contributed to the 
observed interference effect on performance. The persistence of interference with rock arrays in the 
present experiment, however, suggests that this interference may not be entirely accounted for by the 



inherent incentive properties of the array elements. Although it is unlikely that the rocks had any inherent 
incentive value for the animals, it is possible that they accrued incentive value through stimulus 
generalization or association with the candy reinforcers used throughout the experiment. We return to this 
issue below.  

Experiment 3 

Results of Experiment 2 suggest that the task-interference effect may be attributable in part to the 
incentive features of the differing quantities of items in the choice arrays. This was further examined in 
Experiment 3. On the basis of previous training with a variety of tasks, all of the animals had acquired 
facility with the use of Arabic numerals as symbolic representations for quantities (Boysen, 1993). 
Because Arabic numerals have neither inherent incentive value nor a perceptual similarity to the number 
of items they represent, number symbols provide a means to examine the contribution of the incentive 
features of the array stimuli to the interference effect observed in Experiments 1 and 2. 

Method 

The testing context and procedures were identical to that of Experiment 2, with the exception that candy 
arrays or Arabic numerals served as choice stimuli on separate sessions. Subjects were again required to 
choose between candy arrays and Arabic numerals placed in the two stimulus dishes, with the selected 
array returned to the supply bowls and the animal receiving the nonselected array (or the number of 
candies represented by the nonselected Arabic numeral). The type of stimulus (candies or numerals) was 
consistent within all trials of a given session. 

All of the animals received an initial session using candies, followed by candy and Arabic numeral 
stimulus sessions administered in counterbalanced order. Each animal was tested for a total of six 
sessions with candies and six with rocks. The same six number combinations used in Experiment 2 were 
used in the present study, with trial order randomized and the L-R stimulus position counterbalanced 
across trials. A total of 3 replicate trials with each of the six stimulus combinations were given in each 
session (18 trials), for a total of 108 trials with each stimulus type (18 with each number combination). 

Results 

General performance. Overall results are illustrated in Figure 5. Consistent with results in the previous 
experiments, animals were unable to reliably select the smaller of two candy arrays in order to obtain a 
larger reward. Performance with candy arrays was again significantly below chance (M = 0.27, SEM = 
0.04), t(4) = 6.46, with no improvement over performance levels observed during Experiment 1. Again, 
the animals continued to select the larger of the two candy arrays and received the smaller reward. 

Overall performance with Arabic numerals in place of candy arrays, however, was significantly better than 
with candy (M = 0.66, SEM = 0.05), t(4) = 9.29, and was now significantly above chance, t(4) = 3.17. As is 
illustrated in Figure 5, this performance increment was apparent immediately upon introduction of the 
numerical stimuli and was stable over all sessions in which numerals served as choice stimuli. These 
findings indicate that the interference effect arising from an apparent response disposition toward the 
larger of two arrays can be overcome by the use of number symbols as choice stimuli. 

Array size and disparity. Consistent with the results of Experiments 1 and 2, performance with candy 
arrays was related to the disparity between the two choice arrays. As illustrated in Figure 6A, the disparity 
ratio again accounted for the majority of the variance in overall performance across the differing 
numerical combinations of paired-choice arrays (R2 = .71), F(1, 4) = 9.57. The slope of the disparity-ratio 
function with candy arrays was virtually identical to that obtained in Experiment 1 (see Figures 2B and 



6A). The results again document a remarkably stable pattern of performance with candy arrays across 
both animals and experiments. 

However, as illustrated in Figure 6B, a distinctly different pattern of results was apparent with Arabic 
numerals as array elements. The more optimal performance observed with numerals was characterized 
by both (a) a significant increase in the overall mean level of performance (see above) and (b) a 
significant decrease in the slope of this function (for candies, M slope = -.48, SEM = 0.05; for numerals, M 
slope = -.15, SEM = 0.05), t(4) = 4.22. Moreover, in contrast to candy sessions, the slope accounted for 
only a negligible and nonsignificant proportion of variance in performance with Arabic numerals (R2 = 
.25). These findings indicate that performance with numeric symbols was largely devoid of a disparity-
dependent interference, whereas this interference continued to be potent when candy arrays served as 
choice stimuli. 

Individual differences. As was the case in Experiments 1 and 2, there were minimal individual differences 
among the animals in performance with candy arrays (all means ranged from .19 to .40). Nonparametric 
analyses revealed that each animal's performance was significantly below chance, all χ2s(1, N = 108) > 
4.48, and that there was also only moderate variation in the slopes of the disparity-ratio functions (M =      
-.48, SEM = 0.05; range = -.38 to -.64) across animals.  

Overall performance of each animal was significantly higher with Arabic numerals as stimuli, relative to 
sessions with candy arrays (M performance increment = +.39, range = +.26 to +.48), all χ2s(1, N = 216) > 
15.1. Associated with this performance increment, each animal evidenced a decrease in the slope of the 
disparity-ratio-performance function and in the proportion of variance in performance that could be 
accounted for by the slope. Although correlations were observed between the slope of the disparity-ratio 
function and overall performance with numerals (r = .65) and between the changes in slope and 
performance from candies to numerals (r = .49), neither relationship achieved significance. 

Discussion 

The present interference paradigm pitted the potential direct response biases arising from the tendency to 
select the larger of two candy arrays against the response dispositions based on the reward contingency 
(animals received the nonselected array). In Experiments 1 and 2, the direct response biases associated 
with array size introduced a sizeable interference with optimal performance defined by the reward 
outcome. The present results reveal that this performance interference could be substantially attenuated 
if Arabic numerals were substituted for the candy arrays as choice stimuli. This led to a decrease in the 
interference slope (disparity-ratio function) and an associated improvement in performance above chance 
levels. It is important to note that this improved performance was apparent immediately upon introduction 
of the number stimuli and did not require further training. This finding suggests that the animals had 
acquired knowledge of the rule structure of the task but were unable to implement this knowledge 
because of the competing response bias toward the larger array. Thus, the Arabic symbols appeared to 
capture the requisite numerical information of the stimuli without encompassing the incentive properties 
that subserved the interfering response bias. 

The present results confirm our previous report of the improved performance of a single animal (Sheba) 
when Arabic numerals were substituted for candy arrays as choice stimuli (Boysen & Berntson, 1995). In 
both cases, performance was significantly above chance with Arabic numerals and significantly below 
chance with candy arrays. Comparison of the animal (Sheba) tested in both studies again revealed a high 
degree of individual stability in performance. Sheba's overall performance in the corresponding phase of 
the previous study (Phase 3) was 21% with candies and 70% with numerals, compared with 24% and 
72%, respectively, in the present experiment.§ 



Figure 6. Regression functions illustrating the relationship between the probability of optimal response 
and the disparity ratio (numeric disparity-total size of the arrays) for candy array and Arabic numeral 
stimulus choices. The heavy line depicts the mean regression function, and the dotted lines illustrate 
individual regression functions for the 5 subjects. Dots depict the mean data points for each array 
combination tested. 

 

 

General Discussion 

Results confirm and extend our preliminary observations (Boysen & Berntson, 1995) of a powerful 
interference effect in a choice task in which the smaller of two candy arrays must be selected in order to 
receive the larger (nonselected) array as a reward. None of the 5 animals in the present study was able to 
demonstrate an optimal response strategy by selecting the smaller candy array, despite hundreds of trials 
on this task. Rather, animals consistently selected the larger array and, thus, reliably received the smaller 
reward. The present results further indicate that the poor performance on the task was not attributable to 
the conspecific food-competition context used in our previous study. 

Despite their poor performance, the animals' selections were in fact sensitive to the magnitude of the 
numerical difference between the choice stimuli and, hence, the reward differential. Increases in disparity 
among the choice pairs, however, were associated with progressively poorer performance. Performance 
was, in fact, poorest under the very conditions in which the animal stood to benefit the most by the 
optimal selection of the smaller array. This raises the possibility that a direct incentive attraction to the 
larger array may have introduced a competing approach disposition that interfered with optimal task 
performance. The findings are reminiscent of the self-control literature in animals and children 
(Eisenberger, Weier, Masterson, & Theis, 1989; Logue, 1988; Mischel et al., 1989; Tobin & Logue, 1994). 
Young children, for example, have difficulty in inhibiting a direct response to food in order to achieve a 
larger but delayed reward (Mischel et al., 1989). Similarly, adult humans are more impulsive and show 
poorer self-control when food reinforcers are delivered immediately after a response than when 
reinforcement is delayed (Forzano & Logue, 1994). 



Although performance was highly sensitive to the numerical disparity between the array stimuli, the 
animals did not appear to be making absolute disparity judgments. The effects of disparity were qualified 
by the overall size of the stimulus arrays, with a given disparity yielding smaller effects with larger overall 
array sizes. The function that most closely accounted for the animals' performance was not disparity, per 
se, but the ratio of disparity to the mean array size (which accounted for more than 90% of the variance in 
performance with candy arrays). Thus, it appears that the animals' judgments of the differential incentive 
values of the choice stimuli were relative, consistent with findings in monkeys (Schrier, 1956) and 
dolphins (Mitchell, Yao, Sherman, & O'Regan, 1985). These results are also highly reminiscent of the 
microeconomic "marginal utility" functions of humans, in which the relative effectiveness of a given 
increment in payoff diminishes as the base size of the payoff is increased (Kreps, 1988). 

The apparent interference effect on task performance was largely eliminated when Arabic numerals were 
substituted for the candy arrays as choice stimuli. Upon introduction of Arabic symbols, performance 
increased immediately to more optimal levels. This suggests that the animals had in fact acquired implicit 
knowledge of the rule structure of the task, despite the fact that they were unable to implement this 
knowledge with candy arrays as stimuli. Indeed, over counterbalanced sessions with symbols and candy 
arrays, performance shifted immediately from significantly above chance with Arabic symbols to 
significantly below chance with candy arrays. These findings are again reminiscent of the self-regulation 
literature, as children who were unable to inhibit suboptimal approach tendencies to food items in the 
Mischel et al. (1989) study were able to respond more adaptively when the food stimuli were presented 
symbolically in slide photographs. 

The high-incentive items (candies) that composed the stimulus arrays in Experiment 1 likely contributed to 
the observed interference effect on performance. The overall group performance with rock arrays in 
Experiment 2 (although significantly higher than that with candies for 2 of the animals) also did not 
exceed chance levels. The persistence of interference with rock arrays suggests that task interference 
may not be entirely accounted for by the inherent incentive properties of the array elements. Although the 
rock stimuli would be expected to have little inherent incentive attraction, the rocks may have accrued 
incentive value by stimulus generalization, given the perceptual similarities (e.g., in numerosity) between 
the rock and candy arrays. Alternatively, the rock arrays may have acquired incentive value by 
association with the candy reinforcers used throughout the study. A perhaps unlikely nonassociative 
possibility is that, for these animals, bigger is intrinsically better. Although this may be true in an appetitive 
context, it certainly would not be expected if the stimuli were aversive. Thus, regardless of the specific 
source of the residual interference effects with rock arrays, this interference appears to be incentive 
based and associated with the appetitive context of the task. 

In contrast to the consistency of performance across animals in candy sessions, there were notable 
individual differences in performance with rocks. Performance of 2 of the 5 animals was significantly 
higher with rocks than with candies, albeit significantly lower than with Arabic numerals. These 2 animals 
(Sarah and Sheba) are distinguished in having had the most extensive training, and being the most 
accomplished, in symbolic representations. These animals also displayed the highest performance with 
Arabic symbols in Experiment 3. These findings suggest that the rock arrays, at least for some animals, 
may minimize the interfering bias toward the larger stimulus array and permit somewhat more optimal 
performance based on the reinforcement contingency. Even for these 2 animals, however, rock arrays 
were not nearly as effective as Arabic symbols in minimizing interference. 

The present findings may be viewed within the broader framework of evaluative processes (Berntson, 
Boysen, & Cacioppo, 1993; Cacioppo & Berntson, 1994). The evaluative dimension has been widely 
recognized as a pervasive organizing principle that captures the bivalent, directional component of 
behavior (Konorski, 1948; Mackintosh, 1989). Evaluative dispositions, characterized by approach-



avoidance tendencies or appetitive-aversive reactions, are ubiquitous in behavioral contexts. Veridical 
evaluations of the adaptive significance of environmental objects and events are so central to survival that 
all species have biological mechanisms for approaching, acquiring, or ingesting certain classes of stimuli; 
for withdrawing from, avoiding, or rejecting others; and for the establishment of enduring response 
predispositions toward classes of stimuli. 

Of relevance to the present studies is the fact that evaluative organization is apparent across multiple 
levels of neurobehavioral organization. Manifestations of evaluative dispositions can range from simple 
pain-withdrawal reflexes to conditioned approach-avoidance responses to generalized attitudinal 
predispositions toward broad classes of stimuli (Berntson et al., 1993). The significance of this multiplicity 
of levels in evaluative mechanisms lies in the possibility that multiple evaluative dispositions may be 
expressed in a given context. Viewed in this framework, two evaluative dispositions may be operative in 
the present food-selection paradigm: (a) a lower level, nonassociative, inherent approach disposition 
based on the perceptual-incentive features of the choice stimuli, and (b) a higher, associative disposition 
based on the reinforcement contingencies. 

In natural situations, these dispositions may generally lead to concordant behavioral actions; Menzel and 
Draper (1965) suggested commonalities between the direct choice responses of primates and selections 
based on sign learning. In the present study, however, response biases arising from the incentive 
features of the choice stimuli were directly pitted against the associative disposition based on the 
reinforcement contingency. Although the animals had clearly acquired the food-distribution rule structure, 
as evidenced by their performance with Arabic numerals, the direct incentive features of the candy arrays 
introduced a powerful conflicting disposition. The relative potency of the interfering disposition in the 
present task is likely related to the perceptual immediacy of the candy arrays, relative to the delay 
inherent in post-response reinforcement (Forzano & Logue, 1994; Logue, 1988). 

The improved performance with Arabic numbers may be attributable to the fact that these symbolic stimuli 
failed to evoke the interfering, nonassociative disposition. That is, the Arabic symbols appeared to 
capture the requisite numerical information of the stimuli, without encompassing the incentive properties 
that trigger the interfering response bias. Evidence for this view comes from the relatively flat slopes of 
the disparity-ratio functions with Arabic symbols, in contrast to the negative slopes of the functions with 
candy arrays. The flat slopes with numerals indicate that, although the animals were making appropriate 
quantity judgments with Arabic symbols, these judgments were insensitive to the incentive disparity of the 
reward quantities they represented. 

The ability of symbols to encompass selective features or attributes of their real-world referents may 
constitute an important advantage of symbolic representations. Symbols may permit an organism to 
efficiently process selected information and adaptively respond on the basis of that knowledge structure 
while minimizing potential interference from lower level evaluative mechanisms. In this form, symbols may 
not show equivalence relationships with their referents (Cerutti & Rumbaugh, 1993; D'Amato, Salmon, 
Loukas, & Tomie, 1985; Mclntire, Cleary, & Thompson, 1987; Sidman & Tailby, 1982), because symbols 
may represent only selective features or attributes of these referents. This would violate the requirement 
of "symmetry" in the relation between the symbol and its referent. Although equivalence relationships can 
develop between stimuli and associated reinforcers (e.g., Dube, Mcllvane, Mackay, & Stoddard, 1987), 
the present animals had extensive experience and training with Arabic numerals in multiple contexts, and 
the numeric stimuli were not consistently associated with any specific reinforcer. Rather, the relevant 
dimension across training contexts was the numeric significance of the Arabic symbols. This is similar to 
the acquisition and application of number symbols by humans and may account for the apparent lack of 
incentive interference effects or equivalence relationships with Arabic numerals. 



In an earlier approach, Miller (1959) viewed conflict behavior as the net resultant of unitary, opponent 
approach-avoidance gradients. Although Miller's analyses were elegant, this approach is limited by its 
focus on interactions (approach-approach, approach-avoidance) within a single evaluative level of 
organization (Berntson et al., 1993). If multiple levels in evaluative mechanisms are concurrently 
activated, there also arises the potential for interactions across these evaluative levels. The latter may not 
be readily reducible to a single gradient. Thus, although fear and pain both entail negative dispositions, 
they arise from at least partly distinct neural systems, are controlled or triggered by different stimuli, and 
have differential effects on behavior. 

Relatively primitive evaluative dispositions may have notable impact on the expression of more complex 
behaviors related to higher neurobehavioral processes (e.g., see Timberlake, 1994). The concepts of 
instinctive drift (Breland & Breland, 1961), species-specific defense responses (Bolles, 1970; Bolles & 
Fanselow, 1980), preparedness and contrapreparedness (Seligman, 1970), and selective associations 
(LoLordo & Droungas, 1989) may all reflect the lower dispositional biases that can shape the likelihood of 
a specific response or association in a given context. Primitive dispositional biases have also been shown 
to influence attitudes in humans, as task-irrelevant somatic activity associated with approach or 
withdrawal reflexes can bias preference judgments toward otherwise neutral stimuli (Cacioppo, Priester, & 
Berntson, 1993). Like other species, chimpanzees display a wide range of both acquired and inherent 
evaluative dispositions, some of which may be apparent within 48 hr of birth and manifest in basic 
perceptual processing (Berntson & Boysen, 1989; Berntson et al., 1993; Boysen & Berntson, 1989a). 
Clearly, a comprehensive understanding of the behavioral manifestations of evaluative processes may 
require attention to multiple evaluative levels that can be concurrently expressed and interact in complex 
ways. 

In summary, multiple evaluative dispositions may be expressed in a given behavioral context. Generally, 
these concurrent dispositions may serve synergistically to promote adaptive responding, although in other 
cases they may yield cognitive-behavioral conflicts. The nature and behavioral manifestations of these 
conflicts may offer important insights into the cognitive and evaluative structures of humans and other 
animals. In view of the potential adaptive significance of conflicts between primitive dispositions and those 
arising from higher cognitive mechanisms, the emergence of the capacity for symbolic representations 
may well reflect an evolutionary strategy for resolving such conflicts.  

 

† We were primarily interested in the slopes of these functions as an index of the effects of array disparity 
on performance. The y intercepts are not particularly meaningful, as they reflect an extrapolation of the 
functions (to a condition of no disparity) rather than actual empirical data points. These values are also 
quite unstable, being highly sensitive to slight shifts in slope. 

‡ The rocks and candies were readily discriminable by color, shape, texture, and size (rocks were 
approximately 1 in. in diameter, which was almost twice the size of the candies). Hence, little perceptual 
confusion of rocks and candies would be expected. 

§ One apparent difference between the present results and our earlier preliminary study (Boysen & 
Berntson, 1995) was the positive slope between numeric disparity and performance with numerals in the 
earlier study (Figure 1). This contrasts with the essentially null slope of the disparity-ratio performance 
function with numerals in the present experiment. This difference may be more apparent than real, 
however. Reexamination of the earlier data revealed that, although the slope was positive, it did not 
significantly differ from zero. Moreover, in the prior study we illustrated only disparities of 1, 2, and 3, 
because larger array disparities can be achieved only by a diminishing combination of array sizes. 



Consequently, only a few trials with larger array disparities were available in that study. When data for the 
higher disparities is included, however, the slope of the disparity-ratio function for numerals flattens 
considerably (slope = 0.05). 
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