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DISCUSSION 

This article presents the first series of MRI-based anatomically labeled images of the brain of the killer 

whale. These images allow for the visualizing of the distinctive features of the brain of this species from 

two orientations by preserving the gross morphological and internal structure of the specimen. 

Although a quantitative assessment was not made, the killer whale cerebral hemispheres appear more 

highly convoluted, possessing more surface area, than those of smaller species within the same family of 

delphinids such as the bottlenose dolphin (Marino et al., 2001a) and the common dolphin (Delphinus 

delphis) (Marino et al., 2002). The killer whale brain is also approximately 3.5 and 6.5 times more massive 

than that of the bottlenose dolphin and common dolphin brains, respectively. This pattern is consistent 

with Ridgway and Brownson (1984), who found a positive relationship between surface area and brain 

weight among odontocetes, including the killer whale, bottlenose dolphin, and common dolphin. 

Therefore, elaboration of cortical structures may represent the influence of scaling factors but quantitative 

assessments should be made to determine if nonscaling factors partially contribute to the variance. 

Additionally, although scaling factors may play a large role in accounting for the variance in cortex (or 

other brain structures for that matter), it is likely that there are real information processing consequences 

associated with increased convolutions of the cortex and other such scaling features in the brain. 

The corpus callosum is an apparently relatively small structure in the killer whale brain. This observation 

is consistent with findings that corpus callosum midsagittal area in delphinids is considerably smaller in 

relation to brain mass than in other mammals and that dolphins with larger brains possessed relatively 

smaller corpora callosa (Tarpley and Ridgway, 1994). The inverse relationship between corpus callosum 

size and the size of the hemispheres is likely due to trade-offs between conduction velocities and brain 

metabolism (Shultz et al., personal communication). The unusual lateral spatial position of the cerebral 

peduncle in the midbrain has been noted in other odontocetes. It has been hypothesized that this 

arrangement is not only unique to cetaceans but due to the distinctive flexed posture of the midbrain in 

adult cetaceans (Marino et al., 2001a, 2002, 2003a, 2003b; Johnson et al., 2003). The proportions of the 

cerebellum in the killer whale brain are consistent with those in other odontocetes (Marino et al., 2001a, 

2001b, 2002, 2003a, 2003b) as well as with the quantitative finding that the cerebellum makes up a 

significantly larger portion of the total brain mass in cetaceans than in primates (Marino et al., 2000). 

The killer whale brain appears extremely elaborated in the insular cortex, surrounding operculum, and 

limbic lobe. The extremely well-developed limbic lobe is an interesting corollary feature to the small 

hippocampus. This finding is consistent with observations in other odontocetes (Morgane et al., 1980; 

Oelschlager and Oelschlager, 2002; Marino et al., 2003b) and is interesting in light of the fact that killer 

whales exhibit highly sophisticated ranging and distribution patterns that depend heavily on spatial 

memory skills (Baird, 2000). This juxtaposition of a vastly reduced archicortex and a highly elaborated 

periarchicortical zone leads to interesting questions about whether there was a transfer of hippocampus-

like functions to other cortical, including periarchicortical, regions.  

Finally, extreme development in the insular cortex and surrounding temporal operculum in the killer whale 

is intriguing. The insula mediates viscerosensation, gustation, and some somatosensation in most 

mammals. In humans, the frontal operculum is involved in speech. The topographical arrangement of 

cortical maps in cetaceans is very different from other mammals (Lende and Welker, 1972; Sokolov et al., 

1972; Ladygina et al., 1978; Supin et al., 1978) and it remains a possibility that the insula and surrounding 

operculum are serving an entirely different purpose in the killer whale than in other mammals. However, 

one conjecture put forth by Morgane et al. (1980) suggests that, on the basis of architectonic evidence, 

the operculum may cortically represent trigeminal (rostrum) and glossopharyngeal (nasal respiratory tract) 

innervation. Given the fact that various sounds are modified by structures associated with the control of 



air flow through the nasal region, it is a speculative but not altogether unreasonable possibility that the 

cetacean operculum could serve a similar function as the speech-related opercular cortex in humans. In 

general, it would not be surprising to find that there are adaptive features of the killer whale brain 

associated with the evolution of complex communicative abilities given the highly complex social structure 

of this species (Baird, 2000; Rendell and Whitehead, 2001; Yurk et al 2002). Others have suggested that 

the insular region surrounded by the operculum is related to specializations of the auditory cortex 

(Manger et al., 1998), though audition is obviously closely tied to communication. What is clear, however, 

is that because of its elaboration, the temporal opercular region of the killer whale and other odontocete 

brains should be the target of extensive future study. 
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