If it looks like a duck: Fish fit the criteria for pain perception
Commentary on Sneddon et al. on Sentience Denial

Julia E. Meyers-Manor
Department of Psychology
Ripon College

Abstract: Whereas we have denied the experience of pain to animals, including human babies, the evidence is becoming clearer that animals across a variety of species have the capacity to feel pain (Bellieni, 2012). As converging findings are collected from pain studies and the study of cognition, it is becoming harder to deny that fish are among the species that do feel pain.

Until very recently, it was widely believed that infants and young babies were incapable of feeling pain (Bellieni, 2012). As with fish, the argument went that babies had the pain receptors but that they did not experience the pain due to an underdeveloped central nervous system and poor memory (Bellieni, 2012). However, the evidence is becoming clearer that babies have fully developed neurobiological systems to respond to pain (Fitzgerald & McIntosh, 1989) and that their behavioral responses are indicative of the experience of pain (Bellieni, 2012). The arguments for pain experiences in human babies are very similar to the criteria suggested by Bateson (1991) to test for pain in animals.

Specifically, Bateson (1991) and Smith and Boyd (1991) have three basic behavioral signals that indicate their perception of pain: (1) that they respond to painful stimuli in ways that reduce damage, (2) that these behaviors are altered by known analgesics, and (3) that animals engage in avoidance responses to minimize contact with noxious stimuli. In their target article, Sneddon et al. (2018) describe clear examples of increased motor behavior in fish experiencing acetic acid, which would normally be an adaptive response for removal from an environment. Further, they review support for the effectiveness of analgesics in suppressing this change in behavior. Other studies have shown extensive learning of avoidance responses to noxious stimuli in fish (e.g., Dunlop, Millsopp, & Laming, 2006; Overmier & Hollis, 1990; Overmier & Hollis, 1983).

Thus, with good evidence that fish meet the behavioral criteria for the experience of pain, the sticking point on whether fish feel pain seems to be primarily a question of fish sentience. As described by Sneddon et al., sentience includes both cognitive and emotional abilities in animals. Chandroo, Duncan, and Moccia (2004) argue fish show representations of both their internal and
external environments. For example, fish form cognitive representations of aversive stimulation and form expectancies about that stimulation (reviewed in Overmier & Hollis, 1990). Fish show the ability to represent simple categories in order to form basic concepts such as musical types (Chase, 2001). They even show evidence of complex social skills such as social learning, cooperation, and cheating (as reviewed in Bshary, Wickler, & Fricke, 2002).

It is not surprising that fish are capable of a variety of cognitively complex behaviors given the recent research suggesting that even many invertebrates show remarkable cognitive abilities. Bees show the ability to represent numbers (Gross et al., 2009). They also show evidence of problem solving in a string-pulling task and of the ability to transmit that learning socially (Alem et al., 2016). Similarly, jumping spiders show the ability to make decisions about the best routes to take to reach prey items (Tarsitano & Jackson, 1997) and show expectancy violations based on the number of prey species present (Cross & Jackson, 2017). Although it seems unlikely that we will ever find evidence of fish theory of mind or metacognition, it is hard to deny that a variety of animals across phyla seem to show the basic properties of what some authors call “primary sentience,” the awareness of their internal and external environments (for review see Chandroo et al., 2004). As we once did with babies, we now seem to be making complex arguments to deny the experience of pain in fish. If a fish looks like she is in pain and acts like she is in pain, the likelihood is the fish is in pain.

References


The Other Minds Problem: Animal Sentience and Cognition

Overview. Since Descartes, philosophers know there is no way to know for sure what — or whether — others feel (not even if they tell you). Science, however, is not about certainty but about probability and evidence. The 7.5 billion individual members of the human species can tell us what they are feeling. But there are 9 million other species on the planet (20 quintillion individuals), from elephants to jellyfish, with which humans share biological and cognitive ancestry, but not one other species can speak: Which of them can feel — and what do they feel? Their human spokespersons — the comparative psychologists, ethologists, evolutionists, and cognitive neurobiologists who are the world’s leading experts in “mind-reading” other species — will provide a sweeping panorama of what it feels like to be an elephant, ape, whale, cow, pig, dog, bat, chicken, fish, lizard, lobster, snail: This growing body of facts about nonhuman sentience has profound implications not only for our understanding of human cognition, but for our treatment of other sentient species.

Gregory Berns: Decoding the Dog’s Mind with Awake Neuroimaging
Gordon Burghardt: Probing the Umwelt of Reptiles
Jon Sakata: Audience Effects on Communication Signals
PANEL: Reptiles, Birds and Mammals
WORKSHOP: Kristin Andrews: The ‘Other’ Problems: Mind, Behavior, and Agency
Sarah Brosnan: How Do Primates Feel About Their Social Partners?
Alexander Ophir: The Cognitive Ecology of Monogamy
Michael Hendrickx: Integrating Action and Perception in a Small Nervous System
PANEL: Primates, Voles and Worms
WORKSHOP: Jonathan Birch: Animal Sentience and the Precautionary Principle
Malcolm Maclvor: How Sentience Changed After Fish Invaded Land 385 Million Years Ago
Sarah Woolley: Neural Mechanisms of Preference in Female Songbird
Simon Reader: Animal Social Learning: Implications for Understanding Others
PANEL: Seas to Land to Air
WORKSHOP: Steven M. Wise: Nonhuman Personhood
Tomoko Ohyama: Action Selection in a Small Brain (Drosophila Maggot)
Mike Ryan: ‘Crazy Love’: Nonlinearity and Irrationality in Mate Choice
Louis Lefebvre: Animal Innovation: From Ecology to Neurotransmitters
PANEL: Maggots, Frogs and Birds: Flexibility Evolving
SPECIAL EVENT: Mario Cyr: Polar Bears
Colin Chapman: Why Do We Want to Think People Are Different?
Vladimir Pradosudov: Chickadee Spatial Cognition
Jonathan Balcombe: The Sentient World of Fishes
PANEL: Similarities and Differences
WORKSHOP (part 1): Gary Comstock: A Cow’s Concept of Her Future
WORKSHOP (part 2): Jean-Jacques Kona-Boun: Physical and Mental Risks to Cattle and Horses in Rodeos
Joshua Plotnik: Thoughtful Trunks: Application of Elephant Cognition for Elephant Conservation
Lori Marino: Who Are Dolphins?
PANEL: Mammals All, Great and Small
Larry Young: The Neurobiology of Social Bonding, Empathy and Social Loss in Monogamous Voles
WORKSHOP: Lori Marino: The Inconvenient Truth About Thinking Chickens
Andrew Adamatzky: Slime Mould: Cognition Through Computation
Frantisek Baluska & Stefano Mancuso: What a Plant Knows and Perceives
PANEL: Microbes, Molds and Plants
WORKSHOP: Suzanne Held & Michael Mendl: Pig Cognition and Why It Matters
James Simmons: What Is It Like To Be A Bat?
Debbie Kelly: Spatial Cognition in Food-Storing
Steve Phelps: Social Cognition Across Species
PANEL
WORKSHOP: To be announced
Lars Chitika: The Mind of the Bee
Reuven Dukas: Insect Emotions: Mechanisms and Evolutionary Biology
Adam Shriver: Do Human Lesion Studies Tell Us the Cortex is Required for Pain Experiences?
PANEL
WORKSHOP: Delcianna Winders: Nonhuman Animals in Sport and Entertainment
Carel ten Cate: Avian Capacity for Categorization and Abstraction
Jennifer Mather: Do Squid Have a Sense of Self?
Steve Chang: Neurobiology of Monkeys Thinking About Other Monkeys
PANEL WORKSHOP: The Legal Status of Sentient Nonhuman Species