Pet Mutilations and Veterinary Ethics

M.W. Fox

Ear cropping of dogs is among the policies considered unethical by the British Veterinary Association. Any veterinarian performing such surgery would be subject to disciplinary action by the Royal College of Veterinary Surgeons and would most likely lose his or her license to practice. Recently, the South African Veterinary Council unanimously passed a resolution to ban ear cropping in the country. Similarly, the American Veterinary Medical Association (AVMA) has officially voiced disapproval of ear cropping through its acceptance in 1976 of a resolution submitted by the American Animal Hospital Association to delete the mention of ear cropping or trimming from breed standards and to prohibit the showing of dogs with cropped or trimmed ears (JAVMA 169:465, 1976). Yet this practice continues in the U.S., and articles on ear cropping are still published in veterinary journals. It seems that the policies of the AVMA’s House of Delegates have little impact on the profession’s standards of ethics, and that the profession as a whole is rarely able to achieve a consensus on any ethical issue concerning animal welfare.

Other mutilations of companion animals have been debated and defended in veterinary journals in the U.S., including declawing dogs, removing the teeth of pet monkeys and cutting gaited horses’ tails. A very common justification is that if the veterinarian will not perform such operations, then the owner or some other unqualified nonveterinarian will do it (B. MacNamara, JAVMA 174:434, 1979; E Baker, JAVMA 174:442, 1979; S.A. Tischler, Mod Vet Prac 60:870, 1979). W.J. Fuller (Mod Vet Prac 60:436, 1979) has also raised other important ethical questions which are rarely voiced, notably the propagation of genetically abnormal breeds such as bulldogs, toy and ‘tea cup’ variants.

From the various points of view that are being expressed by practicing veterinarians in the U.S., it is clear that there is a growing polarization within the profession. It might be to the advantage of all concerned for the AVMA to set up a working committee to explore the ethics of many current veterinary practices which have been questioned by veterinarians and animal welfare advocates in the U.S. and other countries. The AVMA Panel on Euthanasia has, for example, provided useful recommendations amounting to a professional code of practice for the destruction of companion animals. The time is surely ripe for a panel (which should include nonveterinary representatives from the humane movement as well as from the American Kennel Club and Cat Breeders Association) to be set up by the AVMA to consider some of the questionable practices of breeders, show people and veterinarians. Ethical guidelines or codes of practices such as those of the British Veterinary Association policy on animal welfare and mutilations (Vet Rec 104(16) Supplement, 1979) are needed to protect the basic right of companion animals not to be subjected to unnecessary suffering, either in the short term from cosmetic surgery or in the long term from some genetic anomaly. Companion animals also should be accorded the legal right to have surgery performed on them only by qualified veterinarians, or under their direct supervision. This would certainly eliminate the possibility of an unqualified person ear cropping or otherwise mutilating a pet, and would help protect the interests of the animal and the veterinarian alike.

The Public Governance of Science and Research Animal Welfare

T.E. Malone

The following is excerpted from a speech given by Dr. Thomas E. Malone, Deputy Director of the National Institutes of Health, at the 26th Annual Meeting of the American Association of Laboratory Animal Scientists (AALAS), Anaheim, California, October 5, 1977.

I trace the expression “The Public Governance of Science” to a Columbia University bicentennial lecture given by Dr. Donald Fredrickson, Director of the National Institutes of Health (NIH), in December 1976. In that lecture he said that as recently as a quarter of a century ago, when NIH and AALAS were emerging, “there were no formal arrangements for setting a social priority to the scientific question one hoped to answer.” The proprieties, he went on to say, were largely covered by the Hippocratic Oath, and except for rules on the use of radioactive isotopes, there were few regulations involving ethical considerations. There was a certain autonomy in the scientific imperative, and scant attention — save through the responsibility and self-governance of individual scientists — was given in a collective sense to animal welfare, the use of human subjects in research, biohazards, other legal and ethical considerations that accompany the research effort, and indeed, the selection of research problems and priorities bearing on the well-being of the American public.

There is a hazy and somewhat sequential pathway that one can follow to provide some insight into the reasons for the absence of public intervention in biomedical research until relatively recent times. Before World War II, the federal government was involved in peacetime research, primarily as an adjunct to its limited public health activities. There were, of course, important gains in research of cholera and other infectious and dietary deficiency diseases, but, by and large, the private sector provided the preponderant support for biomedical research. There was not very much in the way of “public patronage” of science, and so the public did not have to be overly concerned about how its monies were being spent.

As discussed by Stephen Strickland in his book entitled Politics, Science and Dread Disease (1972), “a bill to secure government support in the search for a cure for cancer was introduced in Congress in 1927 by the senior Senator from West Virginia, Matthew M. Neely. Mr. Neely’s bill would have provided a $5 million reward ‘to the first person who discovered a practical and successful cure...”
for cancer.” Despite the fact that the bill did not pass, he did receive thousands of letters from individuals who claimed to possess infallible cancer cures.

The basic beginnings of a federal biomedical research effort were nonetheless emerging. In 1930, the Congress (in the Ransdell Act) created the National Institute of Health, authorized the construction of two buildings, created a fellowship program, and in a separate piece of legislation established a Division of Mental Hygiene in the Public Health Service to investigate mental and nervous diseases. Again through Congressional action, the National Cancer Institute was established in 1937. This was the first in a series of mandates to create the categorical, disease-oriented Institutes that now make up most of the NIH.

Biomedical research sustained its greatest period of growth in the two decades following World War II, due to a convergence of several circumstances. Under the research program of the Office of Scientific Research and Development during the war years, there were well-known successes in atomic energy, the wonder drugs and electronics. The war itself brought prominent display the wonders of science and technology. The orbiting of Sputnik by the Soviet Union in 1957 provided another powerful stimulus for enhancing our nation’s technological capabilities. The U.S. commitment to scientific progress was fervent and unquestioning, and biomedical science was a beneficiary of this national spirit. Appropriations at the NIH steadily climbed, and decisions on where to put the emphasis in research were left largely to the scientific community itself, which fortunately carried out this trust with uncompromising excellence.

This state of affairs existed until the mid-sixties, when the roof caved in. A period of diminishing support for biomedical research began. There were competing pressures, from the conflict in Southeast Asia to the plight of the urban poor. Funding for biomedical research reached a plateau, then declined, and was period of diminishing support for biomedical research began. There were competing pressures, from the conflict in Southeast Asia to the plight of the urban poor. Funding for biomedical research reached a plateau, then declined, and was

The Congress (in the Ransdell Act) created the National Institute of Health, authorized the construction of two buildings, created a fellowship program, and in a separate piece of legislation established a Division of Mental Hygiene in the Public Health Service to investigate mental and nervous diseases. Again through Congressional action, the National Cancer Institute was established in 1937. This was the first in a series of mandates to create the categorical, disease-oriented Institutes that now make up most of the NIH.

Biomedical research sustained its greatest period of growth in the two decades following World War II, due to a convergence of several circumstances. Under the research program of the Office of Scientific Research and Development during the war years, there were well-known successes in atomic energy, the wonder drugs and electronics. The war itself brought prominent display the wonders of science and technology. The orbiting of Sputnik by the Soviet Union in 1957 provided another powerful stimulus for enhancing our nation’s technological capabilities. The U.S. commitment to scientific progress was fervent and unquestioning, and biomedical science was a beneficiary of this national spirit. Appropriations at the NIH steadily climbed, and decisions on where to put the emphasis in research were left largely to the scientific community itself, which fortunately carried out this trust with uncompromising excellence.

This state of affairs existed until the mid-sixties, when the roof caved in. A period of diminishing support for biomedical research began. There were competing pressures, from the conflict in Southeast Asia to the plight of the urban poor. Funding for biomedical research reached a plateau, then declined, and was elevated only by a variety of new legislative initiatives that began to set research policies for the NIH. The National Cancer Act of 1971 served as the prototype, and we now find that more than 60% of the NIH budget is associated with targeted, special emphasis programs. This is a manifestation of the increasing interest the “public” had begun to show in the choice of problems made by the research community, assessing them in terms of their apparent relevance to specific disease problems. At the urging of various groups interested in a number of diseases, Congress established the National Cancer Program, and created Commissions, Boards, and Panels to review the conduct and support of biomedical research in such disease areas as diabetes, arthritis, epilepsy, and Huntington’s chorea. The mood of the sixties generated examination and close public scrutiny its governance, one might ask how well we have done to satisfy ourselves and the public in the area of animal welfare. As we well know, about 60% of all biomedical research today involves the use of animals, and the research community has an absolute obligation to the proper and humane treatment of animals so crucial to the health of the public. Unfortunately, policies relating to this dic- tum have neither arisen easily, nor yet reached the point of total application.

A prohibition against cruelty to animals was incorporated into the first legal code of the Massachusetts Bay Colony. Article 92 of that Code reads: “No man shall exercise any tyranny or cruelty towards any brute creatures which are usually kept for man’s use.” The Code went on to state that proper care should be taken of livestock.

Many years later, in 1906, as a result of the widespread publicity over inhumane treatment of cattle being transported across state lines by rail, Congress enacted the so-called “28-hour law.” This law required that cattle be rested for four hours after every 24 hours in transit. The U.S. Department of Agriculture (USDA) was given the responsibility for inspecting rest stations. The USDA has re- mained the regulatory agency for federal animal welfare legislation, although the legislation itself has been broadened to include laboratory and many other non-farm animals.

Even before the passage of these and other laws, however, scientists were...
concerned about animal welfare in research and exercised self-governance in this area. In 1952, an Institute of Laboratory Animal Resources (ILAR) was set up within the National Research Council to disseminate information and educational materials, establish standards and upgrade laboratory animal resources. This was a reflection of the long-standing recognition by the scientific community of the ethical and scientific responsibility to provide humane care for animals used in research. Under a contract from the NIH, ILAR prepared a Guide for the Care and Use of Laboratory Animals which has become a primary reference on standards of animal care. More than 200,000 copies of the Guide have been distributed since it was first published in 1963.

In 1966 the Laboratory Animal Welfare Act was passed, and its successor was the Animal Welfare Act of 1970. The Act was stimulated by the public outburst of pet owners who feared that their animals might end up in a research laboratory. Standards under the Act are enforced by the USDA in about 3000 research facilities.

Accordingly, I believe that we would all agree that the American scientific community has fared very well under animal welfare legislation. Researchers have a great deal of freedom to employ animals as they wish in their experiments, and we will keep it this way — IF we keep our house in order.

Every so often a cry is heard that the United States should use the approach embodied in England under the British Cruelty to Animals Act of 1876, as amended. Under the Act, animal experiments can be conducted only in a registered laboratory. Standards under the Act are enforced by the USDA in about 3000 research facilities.

Generally speaking, I believe that we would all agree that the American scientific community has fared very well under animal welfare legislation. Researchers have a great deal of freedom to employ animals as they wish in their experiments, and we will keep it this way — IF we keep our house in order.

Every so often a cry is heard that the United States should use the approach embodied in England under the British Cruelty to Animals Act of 1876, as amended. Under the Act, animal experiments can be conducted only in a registered laboratory. Standards under the Act are enforced by the USDA in about 3000 research facilities.

I believe that former NIH Director, Dr. James Shannon, testifying in 1965, pretty well answered the proponents of that proposal. He said that while he found the British system quite satisfactory when he worked at Cambridge University in the mid-1930's, he could not recommend its adoption in the United States.

I believe that former NIH Director, Dr. James Shannon, testifying in 1965, pretty well answered the proponents of that proposal. He said that while he found the British system quite satisfactory when he worked at Cambridge University in the mid-1930's, he could not recommend its adoption in the United States.

The magnitude of the U.S. research effort made the highly centralized British system impractical.

I believe that our experience since 1965 has shown that the people of the United States, through the Congress, and we research scientists, through our regulations, have been innovative enough to demonstrate that further legislation is not, at present, needed to correct abuses or prevent unnecessary cruelty to research animals.

But please do not forget that in recent years several new federal animal welfare laws have been passed, reflecting a serious, ongoing effort in behalf of all animals. On balance, these laws have been beneficial. Some of these laws are designed to extend certain humane standards in the transport of animals to the common carriers, mainly the airlines. Humane society findings have shown that dogs and other animals have been shipped in inadequate containers, exposed to extremes of heat and cold, or been otherwise mistreated while in transit. These abuses, while occurring in only a small fraction of animal shipments, are inexcusable and must be corrected.

It is gratifying to note how the research community has accepted the NIH laboratory animal care guidelines which are being used to accredit research facilities and institutions. Accreditation is voluntary, but nearly 400 institutions have obtained it and more are applying. [Ed. Note — 378 institutions have full ac-

Other cognate actions at the NIH include the following:

- Distribution of the NIH "Principles" to the Division of Research Grants (DRG) Executive Secretaries and study section members.
- The request that DRG Executive Secretaries make a notation on their "pink sheets" if there is concern about the use of animals.

I am pleased to report to this group that a revised NIH policy on animal welfare will probably be released before the end of this month, after approval by the Public Health Service. [Ed. Note — Revised edition of the NIH Guide was published January 1, 1979."

It is gratifying to note how the research community has accepted the NIH laboratory animal care guidelines which are being used to accredit research facilities and institutions. Accreditation is voluntary, but nearly 400 institutions have obtained it and more are applying. [Ed. Note — 378 institutions have full ac-

T.E. Malone

Comment

creditation as of December 1979. The American Association for the Accreditation of Laboratory Animal Care will release a current list in the first quarter of 1980. A number of NIH facilities has been accredited since 1966. A new edition of the guidelines will cover actual use of animals in the laboratory, in addition to the care and management of such animals. [Ed. Note — Revised edition of the NIH Guide was published January 1, 1979."

I am pleased to report to this group that a revised NIH policy on animal welfare will probably be released before the end of this month, after approval by the Public Health Service. [Ed. Note — Revised edition of the NIH Guide was published January 1, 1979."

It is gratifying to note how the research community has accepted the NIH laboratory animal care guidelines which are being used to accredit research facilities and institutions. Accreditation is voluntary, but nearly 400 institutions have obtained it and more are applying. [Ed. Note — 378 institutions have full ac-

T.E. Malone

Comment
Chapter 4206, "Care and Use of Laboratory Animals," to which I referred earlier. I know that
mals in research. The public awareness is shifting from questions of housing, care
and feeding of laboratory animals to profound ethical questions about the use of
animals in research.

The public is asking tougher questions all the time, and it behooves us to ask
the same questions of ourselves — before they are asked of us. Does the potential
good justify the use of an animal in an experiment? Will the research yield
fruitful results which cannot be obtained by other means? Is the research neces­
Sary? Are we prepared to terminate an experiment whenever its continuation may
result in unnecessary suffering to an animal? If the answers to these questions are
"yes," then I for one have no difficulty in supporting the research. For only
through the use of animals can we obtain much of the knowledge we need to pro­
vide better health care and longer life.

These questions are addressed directly in our revision of the NIH Manual
Chapter 4206, "Care and Use of Animals," to which I referred earlier. I know that
most of you involved in institutional animal care programs have looked to the
NIH to strengthen your hand here, and we believe that this revision will do just that.

In closing, I should say that I do not fear greater public scrutiny of science
and scientists. I believe that scientists are fallible human beings and that they
behave best in situations where they know they must be accountable to their
peers. In the last analysis, no legal constraint or regulatory authority can so well
police scientists as they themselves. Their own standards, their own moral and
ethical principles, govern them most effectively.

If scientists demonstrate by their behavior their sure assumption of their
responsibilities to the environment within as well as outside their institutions,
then science has nothing to fear but much to gain from greater public interest
and involvement in scientific endeavors.

There is a basic challenge here: to shape research policy so that productivity
and excellence are maintained while responsiveness to society’s needs and con­
cerns is also assured.

Public Awareness and Ethical Issues

As in other areas, there is a fundamental change in public concern for ani­
mals in research. The public awareness is shifting from questions of housing, care
and feeding of laboratory animals to profound ethical questions about the use of
animals in research.

The distribution of a typology of basic attitudes toward animals in the Ameri­
can population is explored through personal interviews with 3,107 randomly
selected persons in the 48 contiguous states and Alaska. Data is presented on the
prevalence of these attitudes in the overall American population and among major
social demographic and animal activity groups. In addition, results are presented
on Americans’ knowledge of animals as well as their species preferences. Finally,
information is presented on perceptions of critical wildlife issues including endan­
gered species, predator control, hunting, trapping, marine mammals and wildlife
habitat protection.

Introduction

The distribution of a typology of basic attitudes toward animals in the Ameri­
can population is explored through personal interviews with 3,107 randomly
selected persons in the 48 contiguous states and Alaska. Data is presented on the
prevalence of these attitudes in the overall American population and among major
social demographic and animal activity groups. In addition, results are presented
on Americans’ knowledge of animals as well as their species preferences. Finally,
information is presented on perceptions of critical wildlife issues including endan­
gered species, predator control, hunting, trapping, marine mammals and wildlife
habitat protection.

American Attitudes

Toward and Knowledge

of Animals: An Update

Stephen R. Kellert*

Abstract

The distribution of a typology of basic attitudes toward animals in the Ameri­
can population is explored through personal interviews with 3,107 randomly
selected persons in the 48 contiguous states and Alaska. Data is presented on the
prevalence of these attitudes in the overall American population and among major
social demographic and animal activity groups. In addition, results are presented
on Americans’ knowledge of animals as well as their species preferences. Finally,
information is presented on perceptions of critical wildlife issues including endan­
gered species, predator control, hunting, trapping, marine mammals and wildlife
habitat protection.

Introduction

During the period 1973-1976, a typology of basic attitudes toward animals
was developed and a limited study conducted to examine the distribution of
these viewpoints throughout the American public (Kellert, 1978). In 1977, the U.S.
Fish and Wildlife Service of the Department of the Interior granted funds to ex­
plore more carefully the presence and strength of these perceptions among
diverse social demographic and animal activity groups in the 48 contiguous
states and Alaska. In addition, five other focus areas were identified for this
study: 1) public attitudes toward critical wildlife and natural habitat issues (e.g.,
endangered species, predator control, hunting, trapping and habitat preservation);
2) the size and social characteristics of various wildlife and domestic animal ac­
tivity groups (e.g., hunters, birdwatchers, pet owners, and humane and wildlife
protection organization members); 3) public knowledge of animals and species
preferences; 4) historical trends in uses and perception of animals during the
twentieth century; and 5) children’s knowledge of, and attitudes and behavior
toward animals.

This report will review some of the results of this investigation. Space limi­
tations, however, restrict the amount of information that can be covered and, thus,